THE MAJOR COUNTING OF NONINTERSECTING LATTICE PATHS AND GENERATING FUNCTIONS FOR TABLEAUX Summary
نویسنده
چکیده
A theory of counting nonintersecting lattice paths by the major index and generalizations of it is developed. We obtain determinantal expressions for the corresponding generating functions for families of nonintersecting lattice paths with given starting points and given final points, where the starting points lie on a line parallel to x+y = 0. In some cases these determinants can be evaluated to result into simple products. As applications we compute the generating function for tableaux with p odd rows, with at most c columns, and with parts between 1 and n. Besides, we compute the generating function for the same kind of tableaux which in addition have only odd parts. We thus also obtain a closed form for the generating function for symmetric plane partitions with at most n rows, with parts between 1 and c, and with p odd entries on the main diagonal. In each case the result is a simple product. By summing with respect to p we provide new proofs of the Bender–Knuth and MacMahon (ex-)Conjectures, which were first proved by Andrews, Gordon, and Macdonald. The link between nonintersecting lattice paths and tableaux is given by variations of the Knuth correspondence. Summary of results and sketch of proofs We announce the proof of the following refinements of the MacMahon (ex-)Conjecture and the Bender–Knuth (ex-)Conjecture. (All the definitions can be found in the Appendix.) Theorem 1 (Refinement of the MacMahon (ex-)Conjecture) The generating function for tableaux with p odd rows (i.e. exactly p rows have odd length), with at
منابع مشابه
The Major Counting of Nonintersecting Lattice Paths and Generating Functions for Tableaux
A theory of counting nonintersecting lattice paths by the major index and generalizations of it is developed. We obtain determinantal expressions for the corresponding generating functions for families of nonintersecting lattice paths with given starting points and given nal points, where the starting points lie on a line parallel to x + y = 0. In some cases these determinants can be evaluated ...
متن کاملViewing Determinants as Nonintersecting Lattice Paths yields Classical Determinantal Identities Bijectively
In this paper, we show how general determinants may be viewed as generating functions of nonintersecting lattice paths, using the Lindström–Gessel–Viennotmethod and the Jacobi-Trudi identity together with elementary observations. After some preparations, this point of view provides “graphical proofs” for classical determinantal identities like the Cauchy-Binet formula, Dodgson’s condensation fo...
متن کاملGenerating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers
An inverted semistandard Young tableau is a row-standard tableau along with a collection of inversion pairs that quantify how far the tableau is from being column semistandard. Such a tableau with precisely k inversion pairs is said to be a k-inverted semistandard Young tableau. Building upon earlier work by Fresse and the author, this paper develops generating functions for the numbers of kinv...
متن کاملElliptic enumeration of nonintersecting lattice paths
We enumerate lattice paths in the planar integer lattice consisting of positively directed unit vertical and horizontal steps with respect to a specific elliptic weight function. The elliptic generating function of paths from a given starting point to a given end point evaluates to an elliptic generalization of the binomial coefficient. Convolution gives an identity equivalent to Frenkel and Tu...
متن کاملCounting intersecting weighted pairs of lattice paths using transforms of operators
Transforms of linear operators on bivariate generating functions can be used for constructing explicte solutions to certain generalized q di¤erence equations. The method is applied to counting intersecting pairs of lattice paths with weighted turns, a re nement of the q-Narayana numbers.
متن کامل